Resource: Equipment - Optical - Microscope : Confocal Dilson's   Event history   Incoming Value Flow
Quantity 1.00 Each
Notes

This confocal microscope is unused in Dilson's lab at McGill University.

Record created date Feb. 3, 2013
Record created by None

Where from:

We don't know.

Where to:

  • Event: Confocal Dilson's Resource use 0.00 Each July 16, 2013 from: SENSORICA
    • Process: Characterization of the Piezo Micromanipulator
      • Workers: Work - R&D optics from: Tibi
      • Labnotes:

        June 17, 2013
        See documentation in this doc
        https://docs.google.com/document/d/180NuS2Rn6rIUfML0skvjQJAYBXNdBNxFsIZbZXa3HwU/edit#

        The setup was made before, there is another labnote for it.
        http://valnet.webfactional.com/accounting/labnotes/324/

        June 17, 2013
        Continued the work. See the Google doc for more details. Jonathan and Antonio were also involved.
        We discovered that the analog out of the Labjack is limited to steps of 0.02Volts. We need 0.002Volts resolution, in order to test below 0.5um piezo steps. Jonathan will make a circuit for this.

        July 18, 2013
        Continued work on characterization. I am doing long acquisitions for precision tests. These results will be entered in the document in the Precision section.

        August 01, 2013
        Worked with Bing and Antonio on the Piezo. We have a problem with the assembly of the piezo controller. Jonathan made a new prototype and we tested it and it did not work. Frederic's prototype still works fine. We could not clearly understand why the second prototype did not work. The new boards for the product seam to be fine. So the problem is still a mystery.

        August 05, 2013
        Recreated the characterization setup, because Jonathan had taken the piezo driver prototype away for the fabrication. I modified the way the fiber is attached to the piezo stack.

        August 06, 2913
        Resumed characterization experiments. I worked on Precision. See more
        https://docs.google.com/document/d/180NuS2Rn6rIUfML0skvjQJAYBXNdBNxFsIZbZXa3HwU/edit#
        The long-term stability problem prevents us from directly measure precision. I put a note in the doc and sent message to the team about it.
        "This [long-term stability of the Mosquito] is a problem with the acquisition system and with the Mosquito in general that we need to address! We need to improve the architecture of the Mosquito by integrating a reference, which is divided from the signal to account for intensity fluctuations."
        I entered the best data here.
        https://docs.google.com/spreadsheet/ccc?key=0AjrQyEif2HItdGJ4TEQxcHdOVzJvdmdHU3lrVUN4OFE#gid=0
        One way around the stability is to measure the difference between 0 Volt and the x Volt, "x" representing an input voltage to the piezo controller, which will result in a motion step.
        Data still needs to be processed.

        Oct 23, 2013,
        tested the 2 axis piezo system, driver and the actuator. Worked with Antonio and Jonathan. Produced the piezo manual
        https://docs.google.com/document/d/18K3m9b_4ah3igcSYuZX4mkTkGPJBSjQVfBVbWE10GC0/edit#

    • Event: Resource Production R&D report 0.00 Each July 16, 2013