Quantity | 1.00 Each |
---|---|
Notes | Small stereomicroscope, 20x max. Used in R&D. |
Photo | ![]() |
Record created date | Feb. 3, 2013 |
Record created by | None |
We don't know.
Microfluidic Chip
Open main document
https://docs.google.com/document/d/1WBG1w-U90niLxVA-GlOR4WeIW7ef9x9nZD9nClXwl0E/edit
OCT 17-18, 2013
Firsts tests using 3D printing for microfluidic chip prototyping and fabrication.
Next time I need to continue the thermal annealing experiment, go beyond 150C.
We also need to test other designs with better sceals.
OCT 22, 2013
Thermal post-treatment of the polymer 3D printed part. Temp. set at 160C.
I also successfully transferred a micropattern from Spot-e to PCL
These activies are repeated in order to clarify the procedures of the Low-cost Tape Sensor design. The citations include these steps as well.
_______________________________________________________________________________________________
Tape sensor - introduction (done)
https://docs.google.com/document/d/1zdmiAOmFeQItxXapPoQMGcESIo45ba9OjiSVuGQv_HU/edit
Tape sensor - gap optimization (IN PROGRESS)
https://docs.google.com/document/d/1GPqPvz-HNo_x3bsnzQJH-MdAUW6-Ng5_rn6X-iQHjrI/edit
https://docs.google.com/spreadsheet/ccc?key=0An3nky8B3vGvdDVaa1RNZEJfTXBRZks0aHEwMkVHUlE#gid=0
Tape and flex sensor - comparison (IN PROGRESS)
https://docs.google.com/document/d/1rVWFDnDA44ukW8spq3I6FK44CpHQsx6EkKqLtUMp-Qc/edit
https://docs.google.com/spreadsheet/ccc?key=0An3nky8B3vGvdHRlazJyd2MtV3I1bFFvWllBOG5KYkE#gid=1
Tape sensor - 3D printing (IN PROGRESS)
https://docs.google.com/document/d/16Xa8rrEBSp0ZAj7IaDn60Q6hmW70u6ZAx3Zh9eA_mvI/edit
_______________________________________________________________________________________________
Manufacturing:
Tape sensor - manufacturing (STANDBY)
https://docs.google.com/document/d/18acvPBS_TTARKdoVYLB4KJiAujJnDLQMEXDhCcvkSvE/edit
Pictures:
https://docs.google.com/drawings/d/1rmfqwBVCDX67FDc1AA79UqCfruJWfc0nDq1F0DaCJf8/edit
https://docs.google.com/file/d/0B33nky8B3vGvRmRtZHU1RzA5TW8/edit
_______________________________________________________________________________________________
Interesting sources:
http://www.roctest-group.com/sites/default/files/bibliography/pdf/c103.pdf
http://www.micronoptics.com/uploads/library/documents/Micron%20Optics%20Optical%20Sensing%20Guide.pdf
http://www.roctest-group.com/sites/default/files/bibliography/pdf/c147.pdf
ronan
Created a low cost optical tape sensor that can be put on different structures to detect bending.
We'll apply it first on a hockey stick.
See project page
http://www.sensorica.co/home/projects/smart-sports-equipment
Started on Friday 27, 2012 After we created the prototype and made the demo for Zhu (Canadian Space Agency, beam deflection sensor) we realized that this device works in stretching and compression. I had the idea to create a very simple and low cost tape sensor using 250 um diameter PMMA fiber and kapton tape. The goal of this experiment was to build the first such prototype and test it. See design https://docs.google.com/drawings/d/17Wb68vkZPeV5jz1GJDJG-TXER2Ofy-1wyndfQbkgp10/edit The device was built and successively tested. See the video made with Daniel http://youtu.be/yKvdryt1iKk
04 JUNE 2013
Worked on the setup to fabricate the low cost Tape transducer. I continued in the same direction from where I left it. The device is now almost done, need to take some pictures and document how it works. This is still a prototype device, to produce a few of them in a systematic matter and test them.
I will use the enhanced LED 850nm Mosquito to test it. I need to make a project presentation to SENSORICA about this, in a week.
05 JUNE 2013
Did some mechanical work on the fabrication device. I finally put in place the micrometer screw and 2 springs to move the working plate. It seems to be solid. After this, I shifted my attention to the Y connector for the 250um diameter PMMA fiber. I created a separate labnotes where I marked 7 hours of work on this. The main problem was to create a mold/stamp for PCL, from which I make the connector. The idea is to stamp the Y grove into PCL, place the fibers into the grooves and apply optical clear epoxy to hold the fibers aligned in place. I started with clay, and moved to etching aluminum.
10 JUNE 2013
Produced a new low-cost tape sensor using Francois' design.
LINK: https://docs.google.com/drawings/d/1asamNBz8tPu4kdlQFe8pgtxvuKKwmVPaYIMSHOoOCOU/edit
11 JUNE 2013
work on the tape sensor presentation
14 JUNE 2013
Created documentation for the low cost tape sensor, adding stuff on the website, and updating the document.
Gave training to Ronan on the Tape Sensor. I also created a labnote for him to collaborate on this project.
16 AUGUST 16, 2013
Worked with Rodrigo on a new tape sensor design. We are trying to implement the idea of optical gearing. See concepts here
https://lh4.googleusercontent.com/VLhJE8ggBraByZLK-WyucfEWbLdz5ScYHO-RZ8t_dNo=w362-h217-p-no
One design use a concave lens (perhaps made with PDMS, using rounded lass rod/fiber as mold). See idea here
https://lh3.googleusercontent.com/fAnLoT_j3kPJST15bq41oYahT-XAuZWAX2RcJCSAXbQ=w345-h207-p-no
The other one uses a scattering (+ absorbent) medium within the gap between two fibers, using index matching gel with micron-size particles (silica powder or carbon powder).
See the design for the second choice here.
https://lh5.googleusercontent.com/TKaGjSu5k_NSM3qCjCIF6-cbXahWO_Ea8N91XjANrnY=w124-h207-p-no
Rodrigo and I designed an experiment to compere intensity variation with gap between an air gap and a scattering (+absorbent) medium. We are going to create the setup and perform the comparison next week. The deliverable will be a white paper. See idea here.
https://lh3.googleusercontent.com/rOv894jxwoewGojdu-sDyKQbzR5qUljyr3EuqZUP6Ko=w345-h207-p-no
23 AUGUST 2013
Worked on the low cost tape sensor with Rodrigo, helped him with the optical setup for some exploratory testing of optical gears. We are using 1mm PMMA fiber for these tests. This is in continuation of the previous work.
Worked with Francois on exploring the constriction transducer with the LED 850nm Mosquito.
See report
https://docs.google.com/document/d/1aAjJoOfv3M1zt1lPsye8TAxtrE_dlt8lXVRBzGoWAf0/edit#
May 22
Worked on the constriction again. I made some experiments to distinguish between my model and Frederic's model of the constriction transducer.
My model: some light get's transferred into the cladding at the constriction site and after some travel comes back in the core. As it does that, it interferes with the light that continued into the core and the detector sees this interference pattern. I thought that if I coat the entire constricted area and the lever with silver I would increase the sensitivity of the transducer, because more light would come back into the core.
I made 3 transducers, one with 4 constrictions, one with 2 constrictions and the one with a single constriction. The first two I constricted approx 30%, the last one approx 50%. I connected them to the Chinese LD Mosquito that came back from Phil.
Through the fluctuations of this Mosquito, because we understand its defaults, I could measure some sensitivity for the 4 constrictions transducer, but not good enough for the other ones. The Mosquito behaves in a strange/unpredictable way.
I used the reusable optical fiber connectors to connect the fiber.
In conclusion, it seems that my theory about the mechanism behind the constriction transducer is not the one I thought.
Pictures and videos were made.
Before I start working on this project I review and restructure documentation - website and docs
I also communicated to SENSORICA about my work.
Project page link
https://sites.google.com/site/sensoricahome/home/projects/tape-sensor
Main doc link
https://docs.google.com/document/d/1HaZh-O3oWcgtxrxaUcCfX6607BS6JPf8PwP6Xq3Xg-Y/edit#
There are a lot of docs that need to be updated around the Tape Sensor.
DESIGN USED
Optical Design - Tape sensor one in (glass) 3 out (PMMA)
https://docs.google.com/drawings/d/1Hlj7-XZFfIicAkXNWfoTiXn3oe-N7Hp_oNsOA2K7WLQ/edit
with the melted glass fiber tip for a smaller exit cone within the gap.
Received the order from Thorlabs and assembled the optical fibers (3 out 1mm PMMA and 1 in, 125/62.5 glass) together.
https://docs.google.com/document/d/1HaZh-O3oWcgtxrxaUcCfX6607BS6JPf8PwP6Xq3Xg-Y/edit#heading=h.rnxa416up1yi
It is not easy to assemble these fibers. I attached the together using a think metal wire. I also put them on a metal bar, but I am not too satisfied with that. Need another bar, probably with a groove in it. Also, the gap is not straight, the joint tube is a little too flexible.
The joint tube is a 2mm diameter transparent shrinking tube. No need to shring the tube around, it is tight enough.
I also prototypeed 7 fiber 250um diameter PMMA fiber, using a shrinking tube to hold them together. We already tried this structure using the 1mm PMMA fiber, and it is quite stable. I polished these fibers and it looks good.
https://docs.google.com/document/d/1HaZh-O3oWcgtxrxaUcCfX6607BS6JPf8PwP6Xq3Xg-Y/edit#heading=h.4cxrib3loxsq
April 23
I worked with Jonathan on the Tape Sensor.
I assembled the rod, from a cylindrical piece of wood, approx 1m long, which I had so buy. I made a groove in it using the Dremel.
April 24
I completed the prototype - glued the optical fibers in the groove of the wooden rod, sanded the rod and inserted it into the aluminum tube. Before inserting it into the aluminum tube we tested the prototype, and it seamed to work well. Some optical fiber preparation (cleaning) was required before connecting the fibers to the PDs and the LED. After the wooden rod was inserted into the aluminum tube I tested the device again. The sensor still works. We need now to find its axis. I also thought about the algorithm to extract the spatial information from the 3 intensities measured on the 3 PMMA collector fibers.
Jonathan helped mounting the PD on the circuit.
Microscopes were used for fiber preparation and for gap alignment inside the groove made in the wooden rod.
April 25.
I continued to work on the demo for Zhu, which was dues on Friday - the day after.
I wrote the equations to extract spatial information from 3 intensities (need to scan the calculations and put them online!)
See document about the mathematical model and simulations
https://docs.google.com/document/d/131qH4gp9XwgynTSZXWs5rarloIF1bV8F_pdhur_t-Yk/edit#
The LabView program (used for acquisition, data processing and display) required some modification, and the equation needed to be implemented - coded in the LabView program.
After these modifications I moved the setup on a different table that we chose for the demo, and wired everything.
I started testing the device and I encountered some problems. No spatial information could be extracted and the data made no sense within the model we were using.
I tried other ways to extract spatial information from the data, but things did not improve.
I discussed with Ivan and Daniel about the problem, and we realized that our model about the prototype was wrong. It turned out that compression and stretch of the joint were dominating the effects. The mirror tilting was was too small to be detected.
The 3 fibers ware applied off center within the aluminum tube. The intensity fluctuations with vending were max if the bending was done on plane containing the fibers. If the device was rotated fibers were 90 degrees no signal was detected.
So it turns out that this prototype doesn't work as expected, but this gave us other ideas about the hockey stick project (see smart sports equipment).